Effects of Renewable Portfolio Standards on Bioenergy: An Econometric Approach

SOFAC Annual Meeting 2022 Aug 9th, 2022 Shiyue Yao (NCSU)

What is the RPS policy?

Renewable Portfolio Standards or Voluntary Targets

- To increase electricity generation from and capacity for renewable sources.
- Currently, there are **32 RPS** policies in place in the US (in addition to nine other state renewable portfolio goals).
- 13 states have no such policy.

Source: NCSL (https://www.ncsl.org/research/energy/renewable-portfoliostandards.aspx)

What are we investigating?

Solar and wind

1. Install new capacity

Biomass- Co-firing fueled plants plants

- 1. Install new capacity
- 2. Burn more biomass in bio-fueled plants

3. Increase the usage of biomass in **existing** cofiring plants

How do we evaluate the effect?

We employed both difference-in-differences and synthetic control method:

- DiD:
 - $Y_{it}^{j} = \beta_{o}^{j} + \beta_{1}^{j}RPS_{i} + \beta_{2}^{j}Post_{t} + \beta_{3}^{j}RPS_{i} * Post_{t} + \gamma_{i}^{j} + \delta_{t}^{j} + \epsilon_{it}^{j}$
 - j=1: bio-energy
 - j=2: other renewables
- Y_{it}^{j} fuel consumption in mmBTUs (EIA Form 923)
- $RPS_i=1$ for ME, NC, NH, OR, VT, WA; $RPS_i=0$ for 13 control states
- $Post_t=1$ for the years after the state RPS policy, otherwise $Post_t=0$
- γ_i^j state fixed effect, δ_t^j year fixed effect

What have we found?

2020

Bio-energy treatment effect

Bio-energy	(1)	(2)	(3)	(4)	(5)	(6)
DID	ME	NC	NH	OR	VT	WA
rps_effect	-2.394***	-0.856	0.450	0.320	-3.919***	-0.0723
	(0.576)	(0.687)	(0.698)	(0.654)	(0.884)	(0.860)
Observations	945	940	913	931	878	961
R-squared	0.165	0.184	0.187	0.189	0.199	0.182
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes	Yes	Yes

<u>Finding 1:</u> RPS policies have had limited (or even negative) impact on biomass electricity investments

Other renewables treatment effect

Other-Renewables	(1)	(2)	(3)	(4)	(5)	(6)
DID	ME	NH	NC	OR	VT	WA
rps_effect	-1.694 (3.718)	-1.197 (1.090)	12.91*** (1.211)	5.484 (4.655)	-11.72** (4.579)	13.69** (4.617)
Observations	207	203	207	228	219	221
R-squared	0.403	0.415	0.376	0.311	0.424	0.366
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes	Yes	Yes

<u>Finding 2:</u> Investments in wind and solar have been positively impacted by the policies in NC, WA; negatively in VT.

Co-fire percentage treatment effect

Co-fire percentage	(1)	(2)	(3)	(4)	(5)	(6)
DID	ME	NC	NH	OR	VT	WA
rps_effect	0.0113	0.0313	0.563***			-0.0274
	(0.0222)	(0.0245)	(0.0298)			(0.0236)
Observations	518	609	483	468	468	493
R-squared	0.018	0.028	0.086	0.016	0.016	0.016
Number of sid	38	45	36	35	35	37
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes	Yes	Yes

<u>Finding 3:</u> Electricity providers are bypassing intermediate investments in co-firing that could extend the lifetime of existing energy infrastructure.

Next Steps

- Expanding the analysis to additional states
- Assessing intensive vs. extensive margin effects
- Additional analysis of state-level trends

Thank you for listening!

Q&A

NC STATE UNIVERSITY

Hydro power

