Assessment of Factors Driving Spatiotemporal Variation in TPO Trends

SOFAC Annual Meeting North Carolina State University **Olakunle Sodiya** August 9th, 2022

Background

- The Timber Products Output (TPO) survey program began in 1948.
- TPO data are procured from primary wood using mills or facilities
 - Mills report their total annual roundwood consumption
 - Proportion of consumption harvested within each county and adjacent counties

Source: Henderson Brothers

Figure 1. Trends in Timber Production Volume (southern U.S. region, 1997-2020)

NC STATE UNIVERSITY

Limitations of the TPO Data

- Historically, TPO census varies by product class and region
 - South had a 2-year frequency,
 - The North had a 3–5-year frequency,
 - The West had a 5–7-year frequency.
- Non-response issue from mills
- Inconsistencies in survey years for certain states and missing data
- Change in Sampling Methodology

Table 1: TPO survey years	s by state	(1997-2013)
---------------------------	------------	-------------

State	1007	1000	2001	2002	2002	2005	2007	2000	2011	2012
State	1997	1999	2001	2002	2003	2005	2007	2009	2011	2013
AL	Х	Х			Х	Х	Х	Х	Х	Х
AR		Х		Х		Х	Х	Х	Х	х
FL	Х	Х			х	х	Х	х	х	х
GA	Х	Х	Х		х	Х	Х	Х	Х	х
кү	Х	Х	Х		х	Х	Х	Х	Х	х
LA		Х		Х		Х	Х	Х	Х	х
MS		Х		Х		Х	Х	Х	Х	х
NC	Х	Х	Х		Х	Х	Х	Х	Х	х
ок		Х		Х		Х		Х	Х	х
sc	Х	Х	Х		х	Х	Х	Х	Х	х
ΤN	Х	Х	Х		х	Х	Х	Х	Х	
VA		Х	Х		Х	Х	Х	Х	Х	Х

Research Question?

- Are the pre-2017 and post-2017 measurements of roundwood production comparable and if so, at what spatial scale?
 - Rossi et al. (2022)
- Are the variations in the TPO production attributable to shift in market factor or TPO survey methodology?

C STATE UNIVERSITY

Figure 2: Average annual percentage growth rate in roundwood production of softwood (SW) and hardwood (HW) species across counties in the southern United States

NC STATE UNIVERSITY

Roundwood Product:	Unpaired t-test with unequal	Bartlett's K-test for		
	variances for equivalence in means	equivalence in variance		
	$(H_0: \mu_{PRE} = \mu_{POST})$	$(H_0:\sigma_{PRE}^2=\sigma_{POST}^2)$		
Total Softwood Production	$t_{df=1704.5}^* = 3.5904^{***}$	$K_{df=1}^* = 3.4301^*$		
Total Hardwood Production	$t^*_{df=1778.9} = 6.6149^{***}$	$K_{df=1}^* = 19.9350^{***}$		
Softwood Sawlog	$t^*_{df=1432.5} = 4.6183^{***}$	$K_{df=1}^* = 50.0240^{***}$		
Hardwood Sowlog	+* — 6 4E21***	$V^* - 90.0720^{***}$		
Hai uwoou Sawiog	$t_{df=1378.1} - 0.4521$	$K_{df=1} = 09.0730$		
Softwood Veneer Logs	$t_{df=251,24}^* = -0.1583$	$K_{df-1}^* = 108.880^{***}$		
	uj -331.24	u) -1		
Hardwood Veneer Logs	$t_{df=227.6}^* = -0.2175$	$K_{df=1}^* = 22.9430^{***}$		
	-	-		
Softwood Pulpwood	$t^*_{df=1355} = 3.4462^{***}$	$K_{df=1}^* = 1.4746$		
	(assumption of equal variances)			
Hardwood Pulpwood	$t^*_{df=1301} = 3.2068^{***}$	$K_{df=1}^* = 1.2468$		
	(assumption of equal variances)			
Softwood Roundwood for	$t_{df=226}^{*} = 1.7195^{*}$	$K_{df=1}^* = 0.0077$		
Composite Facilities	(assumption of equal variances)	-		
Hardwood Roundwood for	$t_{df=48}^* = -2.6852^{***}$	$K_{df=1}^* = 0.4857$		
Composite Facilities	(assumption of equal variances)			
Softwood Roundwood for	$t^*_{df=1302.7} = 2.1356^*$	$K_{df=1}^* = 5.6399^{**}$		
"Other Industrial" Facilities				
Hardwood Roundwood for	$t_{df=1161}^* = 5.5527^{***}$	$K_{df=1}^* = 0.0300$		
"Other Industrial" Facilities	(assumption of equal variances)			
*p<0.1; **p<0.05; ***p<0.01				

Table 4: Two-tailed tests of mean and variance equivalence in the growth rate of log production across the 2015-2017 time period ("PRE") and the 2018-2020 time period ("POST").

Hypothesis

 Do market factors (Inventory, mill capacity, price, etc.) have the same impact on the TPO growth rate in the POST and PRE periods for small and large roundwoods?

Methods

- Based on literature reviewed, we intend to apply a simultaneous equations regression model
 - Supply and demand models

 $D_{it} = f_1(P_{it}, \theta, \alpha_{it})$ $S_{it} = f_2(P_{it}, \Phi, \alpha_{it})$ $D_{it} = S_{it}$

- D_{it} demand for timber production in micro-market *i* of the year *t*
- S_{it} timber supply in micro-market *i* of the year *t*
- P_{it} , weighted average stumpage prices (\$/tons) in the South
- θ vector of additional variables that determine demand (demand shifters housing start (H), mill capacity (M))
- Φ vector of variables that determine supply (supply shifters inventory (V), labor).

٠

Demand functional form:

 $\Delta \ln D_i = \alpha_0 + \alpha_1 \Delta \ln P_i \cdot T_i + \alpha_2 \ln H_i \cdot T_i + \alpha_3 \ln M_i \cdot T_i + \alpha_4 \Delta \ln P_i + \alpha_5 \ln H_i + \alpha_6 \ln M_i + \alpha_7 T_i + \epsilon_i$

- P_{it} weighted average stumpage prices
- T_i a dummy variable representing the "pre" and "post" change periods in the TPO survey methodology

Comments?