

Forest bioenergy markets, policy, and sustainability considerations

Alice Favero Georgia Tech

2022 SOFAC Annual Meeting August 10, 2022

Bio-energy in IAMs

- Its consumption is likely to increase as the stringency of the temperature targets increases
- Increasing role of bio-energy in the energy mix (e.g. 30% energy in 2050 under 1.5C target)

Indicators

Ę

Carbon Effects of forest biomass demand on global forest carbon stock

Market

Effects of forest biomass demand on global producer surplus and industrial timber supply

Land

Effects of forest biomass demand on global forest area, forest plantation and unmanaged forest

GTM

GTM is a forward-looking model: it maximizes the NPV of CS and PS in the forestry sector by selecting the age of harvesting timber and land conversion and management decisions

$$max \sum_{0}^{\infty} \rho^{t} \left\{ \int_{0}^{Q_{t}^{iot}} \{ D(Q_{t}^{ind}, Z_{t}) - C(Q_{t}^{iot}) \} dQ_{t}^{iot} - \sum_{i}^{N} C_{G}^{i}(m_{t}^{i}, G_{t}^{i}) - \sum_{i}^{N} C_{N}^{i}(m_{t}^{i}, N_{t}^{i}) - \sum_{i}^{N} R_{t}^{i}\left(\sum_{a}^{N} X_{a,t}^{i}\right) \right\} [1]$$

- System-wide approach: multiple ecosystem services / goods are considered simultaneously
- Intertemporal and spatial assessment: forests within and across regions are linked through markets
 - Today's supply in one region will affect investment and land use decision in all the other regions
 - Expected future demand will affect present investments decisions

Exogenous forest biomass demands in GTM

Ē

Baseline scenario

Ţ

Forest Biomass supply

Ē

Forest biomass supply by type (2020-2100)

0%

2020 2040

2060

2080 2100

Figure: Change in market variables from baseline under different forest biomass pathways

2030

2040 2050 2060 2070 2080 2090 2100

Land use effects

Zero: Natural/Unmanaged Forests

Medium: Naturally regenerated forests (managed with a wide range of harvesting techniques, but regenerated naturally)

High: Intensively managed plantations

Figure: Change in forestland from baseline under different forest biomass pathways by type

Level of forest management for timber production

Future loss of forest area

F

Figure: Change in forest area from present under different forest biomass pathways in 2100 10

Forest carbon stock effects and carbon debt

Ę

Figure: Change in forest carbon stock from baseline under different forest biomass pathways

Forest carbon stock effects and carbon debt

Ę

Figure: Change in forest carbon stock from baseline under different forest biomass pathways

Change in Forest carbon pools

Ę

Figure: Changes in forest carbon pools from baseline scenario (GtC/yr) 13

Summary

Effects of Forest biomass demand on the market-landclimate system

- More land will be converted to managed forests either from natural forests or future low value farmland
- Some traditional timber products will be replaced by forest biomass production with corresponding effects on the traditional timber market
- More investments will be devoted to increasing growth and yield of managed forests

Biomass policy supply scenarios

- Unconstrained scenario (*starting point*)
- NForest limits = Constrained policy on Natural Forest
 Unmanaged forest area (t) ≥ Baseline unmanaged forest area (t)
- Plantation limits = Constrained policy on plantation
 Forest plantation (t) ≤ Baseline Forest plantation (t)
- Residues limits = Constrained policy on residues
 Residues Utilization rate = 0%

Forest biomass supply

Ę

Forest biomass supply

Ę

Market effects

Ę

Figure: Average change in market variables from the Baseline scenario (2020-2100), all demand scenarios

Ę

Figure: Average change in land variables from the Baseline scenario (2020-2100), all demand scenarios

Carbon effects

Ę

Figure: Change in forest carbon stock from baseline under each policy scenario, all demand scenarios, 2020-2100

Summary

- Natural forest limit scenario:
 - No natural forests conversion without increasing the cost of biomass production
 - Lower the carbon debt (low demand scenario) and lower the payback period (high demand scenario)
- Residues limit scenario:
 - Largest effect on the timber market
 - More loss of natural forestland
 - Lower the carbon debt (low demand scenario) and lower the payback period (high demand scenario)
- Plantation limit scenario:
 - More land converted to forests

Thank you! <u>alice.favero@gatech.edu</u>

Summary

- Less uncertainty under regulation
- Regulation cannot avoid an initial decline of the stock but reduce payback period
- Carbon debt persists under low demand with regulation

- Highest increase in forestland under plantation limit scenario
- Highest decrease in natural forestland under the residues limit scenario
- Natural forestland can be preserved without high costs (natural forest limit scenario)

Change in Forest Carbon Stock in 2100 from present levels

