Global-to-local: Perspectives on global change drivers and implications for the southern forest sector

Justin S. Baker

Associate Professor, Forestry and Environmental Resources Director, Southern Forest Resource Assessment Consortium

Collaborating Institutions:

Disclaimer: Some of this content is under peer review. Please do not cite or distribute

- Global change drivers include gradual factors:
 - Environmental change
 - Socioeconomic developments
 - Emerging market growth
 - Paradigm-shifting technology developments

- How do local resources managers adapt to gradual global change drivers?
 - Adaptive management to new market/policy realities (recursive dynamic)
 - Expectations → management today is a function of where we *think* we'll be in the future (intertemporal)
 - Markets, productivity change, etc.

- Could also include *instantaneous* exogenous or unanticipated factors:
 - Pandemics
 - Armed conflict
 - Trade disputes

- How do local resources managers adapt to gradual global change drivers?
 - Expectations => management today is a function of where we *think* we'll be in the future
 - Markets, productivity change, etc.
 - Subject to local resource constraints, institutions

- How do local resources managers adapt to instantaneous global change?
 - Adaptive management → adjustments to unanticipated exogenous change
 - Management change subject to lag effects
 - Decisions post-event can have recourse

Local modeling perspective

- Local scale analyses (and some regional frameworks) are based on exogenous factors
 - Prices, input costs, land rents
 - Based on global market conditions
- We can use Monte Carlo to quantify ROI for a stand
 - But when we scale up... the cumulative effect of management changes affect markets, creating market feedback
 - Need to understand changing relative comparative advantages under global change

Global modeling perspective

- Modeling global systems can miss nuance of local factors
 - Resource conditions
 - Institutions
 - Infrastructure
 - Etc.

Global Modeling Perspective

 Recent advances by the global FSM community in modeling future "pathways"

Figure 3: Relationship of key elements in Forest Sector Pathway (FSP) narratives.

Source: Daigneault et al. 2019

Global Modeling Perspective

For-MIP Results

- We're seeing common themes in directionality of global results.
 - What about regional outputs?

Wider variation in regional outputs

Why the divergence at regional scale

- Global models have different criteria for optimizing spatiotemporal distribution of land use/harvests
- Global models may not capture nuance of local/regional systems
 - What is the solution?

Global

National

Modeling at different spatiotemporal scales offers flexibility in analysis of policy and investment options

Regional

Local

Integration across Scales

- What is SOFAC's role?
 - Continue improving representation of southern forestry
 - Participation in multi-model assessments
 - Model integration efforts
 - Iterative processes across scales to achieve "convergence" in market outputs

NC STATE UNIVERSITY

Integrating Spatially Explicit Process and Economic Modeling

(with Tom Gower, Madisen Fuller, Bob Abt, Maniswini Ganjam)

Local

Closing Remarks

- Markets and environmental change forces matter when modeling policy and market change
- Economic models reflect market opportunity costs of mitigation and facilitate tradeoff analysis
- Integration across scales and disciplines can improve modeled assessments

Thank You!

- Questions?
 - Contact: <u>justinbaker@ncsu.edu</u>
- Acknowledgments
 - Southern Forest Resource Assessment Consortium (SOFAC)
 - US EPA
 - NSF STC: Science and Technologies for Phosphorus Sustainability
 - NSF Innovations at the Nexus of Food, Energy, and Water Systems
 - FABLE Consortium
 - Sustainable Development Solutions Network, FOLU Coalition, and IIASA

